常理会认为,如果飞船里的时间被拖慢了,则里面的航天员会看到外面的世界相对地“加速”了。可是,狭义相对论却算出相反的结果。
日常生活中其实也有这种怪异的情况:如果两人相距一段距离,则A会看到B“缩小”了,但是B也觉得A“缩小”了。这种透视现象已经被人们适应、接受了,因为它存在于平日的生活里,但是人们对相对论就毫无准备。
我们已经对有关距离的相对论见解习以为常了:从北京到上海的距离当然等于上海到北京的距离。另一方面,当我们考虑到速度方面,会认为如果一个物体在运动,运动一定会是相对于某物:星体、地面或另一人。A物相对B物的速度,是相等于B物相对A物的速度,两者完全相等。
在狭义相对论中,一个移动中的时钟相对观测者的时钟显得较慢。如果A和B在不同的飞船上,而相对速度为接近光速,则A(使用自己的时钟)觉得B时间变慢了,B也觉得A的时间慢了。
注意要在参考系统中建立“同步”的概念,“到底一件事是否和另一处的另一件事同时发生”这个问题有着关键的重要性。所有计算都最终要涉及到哪些事件是同时发生的。也要留意,要建立两个空间中相隔的事件的同步性,这两个地方一定要有讯息相互传递,这也代表了光速是决定同步性的一个重要因素。
大家当然会问到,狭义相对论怎么能在A相对B有时间膨胀而B相对A也有时间膨胀的情况下不前后矛盾。要消除矛盾,我们必须丢弃人们日常对同步性的直觉概念。同步性,是位于一个参考系中的一位观测者和一系列事件之间的关系。如此类推,我们能接受“左”和“右”是参照于观测者的位置和方向。这是因为左和右是一种物体间的关系。同理,柏拉图解释,“上”和“下”是对应于地球的表面的一种关系,因此人们是不会在他们的对跖地(球面上任一点与球心的连线会交球面于另一点,亦即位于球体直径两端的点,这两点互称为对跖点。)掉下去。
理论的架构里有一个同时性的相对论,它影响着特定事件如何根据有相对运动的观测者被调准。由于每个观测者对两个事件是否同时发生都有不同的见解(见孪生子佯谬),因此任一个观测者都可认为对方的时钟减慢了,这并不会导致理论自相矛盾。这矛盾现象有许多更明确的解释,如下。
时态坐标系与时钟同步
编辑
相对论使用时钟同步的步骤来建立时态坐标系。现在这常被称为爱因斯坦同步步骤,因为曾出现在他于1905年的论文里。
一位观测者发送一束光讯息,根据他的时钟时间为t1。在一处遥远的事件,这束光被反射回来,在t2时到达原先的观测者(根据同一个时钟测量)。这个情况下,由于光线来回都以同一个速度走着同一条路线,因此光讯息在遥远处被弹回来的那一刻的时间tE为tE = (t2 -t1) / 2。这样,使用一个观测者的一个时钟便可以定义时态坐标系,并在宇宙各处都适用。
对称的时间膨胀效应发于以这种方式设立的时态坐标系中。效应中,另一个时钟被观测者认为走慢了。观测者并不觉得自己身上发生著时间膨胀,但他可以知道相对另一个坐标系,他的时间是显得较慢。
速度时间膨胀的时空几何
编辑
横向运动的时间膨胀
动画中的绿点和红点代表飞船。绿色船队相互并没有速度,因此每艘飞船上的时钟所走的速度都相同,而船队则可以保持飞船之间的同步。红色船队相对绿色船队移动,速度是光速的0.866倍。
蓝点代表光束。根据绿色船队的时间,光束每来回一次所花时间为2秒,单向所需时间为1秒。
从红色飞船看(根据自己的时间),两个红色飞船之间的光束单向所需时间为1秒。而从绿色飞船来看,红色飞船之间所发出光线的路径为一个对角的斜线,单向所需时间为2秒。(以绿色的角度看,红色飞船每2秒(绿色飞船时间)行进距离为1.73(
3
{\displaystyle {\sqrt {3}}}
)光秒。)
其中一艘红色飞船每秒向绿船发射讯号。根据绿色飞船的时间,每隔2秒才接收一次讯号。动画中没有提到的是,所有物理效应都被等比例缩小了。红色飞船发出的讯号频率(红色飞船所测量到的)比绿色飞船接收到的讯号频率(绿色飞船所测量到的)要高,反之亦然。
此动画分别以红色或绿色飞船作为参考物,藉以强调速度时间膨胀的对称性质。由于相对论中(牛顿力学中也如此)没有绝对运动这回事,因此无论是红色还是绿色的船队“在其自己的参考系中”都会认为自己是不动的。